
J .  Fluid Mech. (1995), vol. 287, pp.  21-58 
Copyright 0 1995 Cambridge University Press 

21 

Interaction of a potential vortex with a local 
roughness on a smooth surface 

By OLEG S. RYZHOV' A N D  SERGEY V. TIMOFEEV' 
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, 

*Computing Center, Russian Academy of Sciences, 40 Vavilov Street, 117333 Moscow, 
Russian Federation 

NY 12180-3590, USA 

(Received 23 October 1993 and in revised form 3 October 1994) 

Disturbances generated by a potential vortex moving past a small hump or dent on the 
otherwise smooth flat plate are considered. Features peculiar to this problem derive 
from the fact that the vortex is stuck with a fixed fluid particle; hence the nonlinear 
dependence of the pressure on the induced velocity field ensues even if the vortex 
intensity tends to zero. Formulation of the problem on a flow in the viscous wall 
sublayer given in canonical variables involves four similarity parameters for any 
particular shape of a roughness. The parallels between the process at hand and sound 
scattering from a boundary layer with a small obstacle at the bottom are indicated. 
Results from numerical integration of the boundary-value problem posed allow us to 
trace the evolution of the wave-packet structure depending on the potential vortex 
intensity. Overlapping of the peak wings and formation of an almost continuous 
spectrum in the Fourier decomposition of the signal serve as a guide for explaining the 
explosive development of the wave packet as distinct from the Tollmien-Schlichting 
wavetrain that has been registered experimentally. 

The theory developed is applied to discussing the so-called bypass mode of transition 
provoked by external turbulence. Special emphasis is laid on flows in gas turbine 
engines where bypass transition plays a dominant role owing to extremely high free- 
stream turbulence levels. 

1. Introduction 
The problem of how convected vortices in an effectively inviscid flow interact with 

the viscous boundary layer on a solid wall has two distinctive aspects primarily 
depending on the vorticity strength. Up to now, the main efforts from both the 
theoretical and experimental sides have been concentrated on exploring processes 
governed by external vortical disturbances of large intensity. Situations of such a kind 
may arise, for example, in flows past an aircraft wing that are characteristic of take- 
off and landing conditions. A set-up to simulate these conditions experimentally has 
been designed by Harvey & Perry (1971). In their observations the trailing vortex shed 
from the wing tip provoked a boundary-layer separation in the form of a secondary 
vortex. Walker (1978) was the first to attack the problem on potential vortex/ 
boundary-layer interaction theoretically, in order to elucidate experimental data 
then available. Firm evidence from observations by Harvey & Perry (1971) and 
calculations due to Walker (1978) revealed the mechanism for a convected vortex to 
induce an unsteady boundary-layer separation terminating in the birth of the 
additional vortex in the vicinity of a solid surface. Very similar situations are typically 
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observed in rotorcraft flight and gas turbines where the vortical endwall flows trailing 
each blade impinge against the downstream row of blades. An extensive experimental 
and computational study of vortex/rotor-blade interactions has been conducted by 
Caradonna, Strawn & Bridgeman (1988), for a review of gas-turbine-engine flows 
involving broad discussion of many technical points see Mayle (1991). Another 
problem where unsteady separation represents one of the dominant features is a 
pitching airfoil, pertinent data have been summarized by McCroskey (1982). The cause 
of unsteady separation terminating in the generation of a secondary near-wall vortex 
is seen in all cases mentioned to be an adverse pressure gradient that was produced by 
the convected vortex or pitching motion of an airfoil. 

The next step has been taken by Doligalski & Walker (1984) in an attempt to explain 
the bursting phenomena continually occurring in a turbulent boundary layer as the 
mechanism of vorticity production in the process of a strong viscous/inviscid 
interaction. Again, the external disturbance was assumed to be a vortex filament 
convected in a uniform stream past a flat plate, computations being performed for 
various convection rates of the vortex relative to oncoming flow. The recent 
applications of this idea in relation to the vorticity regeneration process in flows 
undergoing transition to turbulence as well as in fully turbulent boundary layers are 
set forth in Smith et al. (1991). Though in a turbulent boundary layer the bursting 
(eruptive) activity manifests itself through convected hairpin vortices and for this 
reason is three-dimensional in nature, nevertheless, the process may be approximately 
viewed as being nearly two-dimensional in the vicinity of the symmetry plane normal 
to the crescent-shaped ridge of each hairpin vortex. 

Thus, in the aforementioned theoretical as well as experimental studies breakdown 
of a boundary layer owing to formation of a closed bubble with recirculating fluid and 
ensuing eruption of the rapidly growing eddy is a crucial point determining the 
essentials of the phenomenon. We are thereby led to the general notion of unsteady 
separation that is happening under various conditions. The main concern in earlier 
work on the subject was with the manner in which the boundary layer evolved and 
thickened. Though at the initiation of the motion the wall shear stress could be positive 
over the entire body surface, results from both numerical solutions (Collins & Dennis 
1973 ; Cebeci 1979) and asymptotic expansions (Cowley 1983) pointed to the formation 
of a singularity at some finite instant. Many efforts had been mounted to verify 
different conjectured structures of the unsteady flow field (see Williams (1977) for an 
exposition of the so-called Moore-Rott-Sears model) until the complicated nature of 
the singularity developing under the influence of the prescribed adverse pressure 
gradient was brought to light by Van Dommelen & Shen (1980). They performed an 
accurate numerical integration of the classical Prandtl equations in the problem on a 
circular cylinder impulsively put into motion and revealed boundary-layer focusing 
into an extremely narrow band at the terminal stage of evolution. This sharp spike 
involved a vorticity-depleted region which indefinitely shorted in length and thickened 
in the transverse direction as time approached some particular eruption instant. Van 
Dommelen & Shen (1982) have also obtained an asymptotic solution describing the 
singular flow field. When the vorticity-depleted bubble enters the final stage it becomes 
independent of the pressure distribution in the mainstream. Numerical results 
presented recently by Peridier, Smith & Walker (1991 a)  for the vortex-induced 
boundary-layer separation are in excellent agreement with asymptotic focusing of the 
erupting spike as predicted by the Van Dommelen solution. 

It should now be stressed that all analytical and computational studies cited above 
were performed within the framework of the classical boundary-layer theory by 
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Prandtl where the pressure gradient is considered to be given in advance from a 
solution for external potential flow. Therefore the formation of a singularity in the 
near-wall region might seem to be provoked just by this feature, whereas with 
viscous/inviscid interaction taken into account the velocity field should retain its 
smooth behaviour for a longer period of time if the focusing process is not eliminated 
altogether. Indeed, from its first steps the interacting boundary-layer theory in the form 
of triple deck put forth in Stewartson (1969), Neiland (1969), Stewartson & Williams 
(1969), and Messiter (1970) was aimed at ruling out possible discontinuities of different 
types in viscous shear flows. In line with this methodology, an attempt to mitigate the 
abrupt focusing of flow into an erupting spike by means of the pressure gradient 
depending on the induced displacement thickness has been undertaken by Chuang & 
Conlisk (1989) in their investigations into separation caused by the vortex in motion 
over a solid surface. However, as has been shown by Brotherton-Ratcliffe & Smith 
(1987) the complete breakdown of the unsteady velocity field can happen under certain 
conditions even if the external pressure distribution is to be computed simultaneously 
with the displacement thickness. The subsequent consideration by Smith (1988) for the 
general environment testifies to the terminal singularity structure as a generic state that 
might be reached by most two-dimensional erupting boundary layers at finite time. The 
existence of the asymptotic structure has been confirmed by recent computations 
exposed by Peridier et al. (1991b). Their results show that the role played by 
interaction in unsteady separation is really twofold: (i) the induced pressure brings an 
end to the infinite growth of the vorticity-depleted zone towards the upper reaches of 
the boundary layer, implying that the eruptive process becomes less acutely 
pronounced, (ii) on the other hand, occurrence of the singular behaviour in the 
instantaneous streamline pattern is accelerated being accompanied by bifurcation of 
the secondary eddy into several smaller bubbles with reversed flow. 

Completely different features are inherent in the disturbance pattern when the 
strength of a potential vortex is fairly weak and it moves at a comparatively small 
distance from the solid surface. In this case, the vortex does not violate the boundary- 
layer structure to leading order, on the contrary, the response of the viscous near-wall 
region to the vortex motion is passive, no separation starts to develop in this thin so- 
called Stokes sublayer. Therefore the classical approach due to Prandtl is applicable in 
full measure for describing smooth external and internal velocity fields in a regular 
manner. Some rough elements should be included into the body contour for the 
viscous/inviscid interaction process to become operative. Thus, we are naturally led to 
a problem of the boundary-layer receptivity aimed at clarifying the issue of how fairly 
weak disturbances that can vary in physical nature penetrate into the boundary layer 
and are transformed into Tollmien-Schlichting eigenmodes. In general terms, the 
problem has been posed by Morkovin (1969), for recent progress towards 
understanding this complicated phenomenon see Goldstein & Hultgren (1 989), 
Kerschen (1989), and Kozlov & Ryzhov (1990) and references therein. 

The receptivity mechanism in question was briefly outlined in Ryzhov (1989) and 
Kozlov & Ryzhov (1990) in view of some features peculiar to it. First, insofar as the 
vortex is stuck with a fixed fluid particle the nonlinear dependence of the pressure on 
the induced velocity field ensues in the potential flow region even if the vortex strength 
tends to zero. Secondly, the interaction between the travelling vortex and local 
variations in surface geometry is essentially nonlinear and stems from quadratic terms 
entering the unsteady boundary-layer equations. When confining to the weak vortical 
intensities one may linearize the original system of equations ; the linear approximation 
falls into two parts owing to the superposition principal. The steady term accounts for 
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changes produced in the oncoming shear flow by the roughness, whereas the time- 
dependent part of the linear solution is given by relations coming from the Stokes 
sublayer. This second part may be calibrated so as to provide time-scale coupling 
between the external disturbance and Tollmien-Schlichting eigenmodes through 
making an appropriate choice of the vortex strength and location, but under such 
conditions the streamwise spatial scale turns out to be of order of the convective 
reference length. In the limit as the Reynolds number tends to infinity, the ratio of the 
wavelengths of unstable Tollmien-Schlichting eigenmodes to the reference length of 
the free-stream vortical disturbances becomes very small. On the other hand, the 
streamwise spatial scale required for matching with viscous eigenmodes may be 
introduced into the problem by means of inhomogeneities in the steady velocity field 
owing to variations in the solid-body geometry. Obviously, the quadratic terms are to 
be taken into consideration for describing the interaction. In the next approximation 
the system of governing equations is also linear but inhomogeneous, contributions to 
the right-hand sides of these equations being given by the products of both parts of the 
linear solutions. So, just allowing for the quadratic terms creates a mechanism to excite 
the Tollmien-Schlichting eigenmodes. According to Ruban (1 984) and Goldstein 
(1985), a similar mechanism underlies the scattering of harmonic acoustic signals into 
unstable oscillations in the boundary layer by a small hump or dent on an otherwise 
flat plate. The scattering process is extremely sensitive even with respect to a sudden 
change in the surface curvature (Goldstein & Hultgren 1987). 

Another feature to be pointed out with regard to the potential vortex/small 
roughness interaction is the emission of a wave packet (vortex spot) instead of an 
isolated monochromatic wavetrain that predominantly finds use in wind-tunnel tests. 
The structure of the wave packet is primarily determined by pulsations with the largest 
amplitude growth rate, this maximum being located in the vicinity of the lower branch 
of the neutral stability curve in the limit of high Reynolds numbers (Zhuk & Ryzhov 
1983). Hence, it is clear, and results of calculations corroborate, that at the linear stage 
of development the wave packets excited by any external agency operating in the pulse 
mode are practically identical. However, disturbances of this type bear some distinctive 
properties since they incorporate wave modulation from the site of birth. As Gaster 
(1975) first highlighted, owing to vitally important modal interaction, the wave-packet 
propagation happens explosively, growing pulsations enter the nonlinear stage very 
rapidly, and then break down giving rise to a turbulent spot. However, computations 
in this pioneering work were in point of fact based on unvalidated assumptions. 
Careful asymptotic analysis subsequently performed by Ryzhov & Terent’ev (1 984, 
1986) within the framework of linearized two-dimensional triple-deck theory has lent 
credence to the standpoint of Gaster (1975) that the violent nature was characteristic 
of vortical wave-pulse amplification. Extension of the linear asymptotic analysis in 
Ryzhov & Savenkov (1 987) gave solid grounds for three-dimensional wave-packet 
calculations using the steepest descent approach and revealed a resemblance of the 
two-dimensional and three-dimensional pulsation structures. Analogous results were 
set forth in Duck (1987). A conclusion of principal importance to be drawn from all 
these studies points to extremely dissimilar behaviour of the harmonic wavetrains and 
modulated wave packets: disturbances of the first type gain strength gradually with 
distance, unlike travelling and spreading oscillations of the second type which may be 
viewed as blowing up in time and space. According to Ryzhov & Savenkov (1989, 
1991) and Smith (1991), vigorous development of the wave packet also persists in the 
nonlinear regime, preventing numerical procedures applied to the interacting 
boundary-layer equations from being continued beyond a certain stage where strong 
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irregularities in the signal shape appear and grow steeply. Experimental verification of 
the violent nature of the modulated signal propagation has been provided by Gaster 
& Grant (1975); in their quiet wind-tunnel tests, wave packets were created by 
introducing weak impulse-like puffs through a small hole in a flat plate and registered 
up to the onset of the nonlinear distortions appearing in the central cycles of 
pulsations. Later on Gaster (1980, 1981) continued his observations on artificially 
generated vortex spots to enable the conditions of their breakdown to occur in a 
controlled manner. Recently, an extensive study on the evolution of a weak localized 
disturbance was conducted by Breuer & Haritonidis (1990), subsequent results 
pertaining to a strong disturbance was reported in Breuer & Lanfahl (1990). The 
development of localized disturbances in a boundary layer from the small-amplitude 
wave-packet stage up to the ultimate formation of a turbulent spot has been traced in 
low-turbulence wind-tunnel tests by Cohen, Breuer & Haritonidis (199 l), with the 
main focus on nonlinear effects. In keeping with the aforesaid, experimental data are 
indicative of great distinctions in the routes to transition peculiar to monochromatic 
wavetrains and modulated wave packets. 

The first attempt to inquire into the essentially nonlinear interaction induced by a 
strong convected vortex filament on the boundary layer over a flat plate with a small 
hump has been undertaken in the work by Chuang & Conlisk (1989) cited above. As 
they claimed, depending on the vortex strength, the calculations might be continued 
significantly beyond the non-interactive flow regime considered by Doligalski & Walker 
(1984). However, the main result was the observation of a small tertiary eddy formed 
in the latest phase of computations. It follows from the foregoing discussion of the 
work by Peridier et al. (1991 b) that this additional eddy must eventually terminate in 
the singular focusing of the interacting boundary layer asymptotically described by 
solutions from Brotherton-Ratcliffe & Smith (1987) and Smith (1988). Apparently for 
this reason, the excitation of the Tollmien-Schlichting eigenmodes in the form of a 
modulated wave packet was not detected in the essentially nonlinear vortex/hump 
interaction process. The situation parallels to some extent that in another nonlinear 
receptivity problem on a large-amplitude vibrator installed on an otherwise flat surface 
where Duck (1985, 1987) found an extremely irregular disturbance pattern shortly after 
the beginning of generation. Unstable inviscid Rayleigh eigenmodes for the basic 
velocity profile were computed by Duck (1988) with reference to some correlation 
between the magnitude of their growth rate and the occurrence of the apparent 
singularity, leading to the breakdown of a numerical solution. Recently, a quite 
different approach has been proposed (Bodonyi et al. 1989) if only to partially 
overcome difficulties in computational studies. The steady flow was taken to be of the 
viscous-inviscid nonlinear interactive type while the unsteady disturbances were 
assumed to be governed by the Navier-Stokes equations linearized about this flow. 

The focus in the present work is in the computational study of the vortex- 
filament/local roughness interaction provided that the process be considered mild 
in the terms used in the above discussion. On this assumption, interaction terminates 
in the emission of a wave packet rather than in the focusing of a boundary layer into 
a narrow band. So, in the regime to be analysed below, Tollmien-Schlichting 
instabilities comes into play first thereby preventing an eddy of recirculating fluid from 
being formed and growing to appreciable sizes. 

A schematic diagram of the vortex/roughness interaction showing regions with 
asymptotically different properties is presented in figure 1. A small parameter e 
inherent in the triple-deck theory is introduced through the Reynolds number R, as 
e = R;li8 (an exact definition of the Reynolds number will be given in 92). Three tiers, 
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FIGURE 1. Schematic diagram (not to scale) of the potential convected vortex/surface-roughness 
interaction. In a long non-interaction region which extends upstream and consists of three tiers 1, 2 ,  
3 disturbances are driven by the vortex-induced pressure gradient. The region centred around a local 
hump (or dent) involves three decks I, 11, I11 where the strong viscous/inviscid interaction determines 
for the most part variations of the pressure. 

1, 2 and 3, are used to specify the flow field at long distances upstream of a hump or 
dent. Most of the boundary layer 2 and the Stokes sublayer 3 at its bottom, whose 
length is proportional to 6 ,  are passive and driven by the pressure gradient induced by 
the convected vortex in the nearly uniform potential stream 1. Solutions here are 
independent of the interaction process downstream. The vortex elevation of order 2 
above the solid surface is chosen so as to produce disturbances in the region of 
viscous/inviscid interaction around the plate imperfection which are scaled as 
suggested by the triple-deck approach, the vortex strength being determined from 
analogous considerations. The interaction region consists also of three tiers I, I1 and 
111 of the same length proportional to e3. So, the effective longitudinal scale of order 
2 intrinsic to the vortex filament is intermediate between the reference lengths of the 
two distinct regions mentioned above. Disturbances in the near-wall sublayer 111 
evolve under the influence of the self-induced pressure created in potential flow I and 
transmitted across the main part of boundary layer I1 in a passive way. However, initial 
distributions of fluid parameters far upstream of the obstacle in each of these decks 
derive from the matching with known solutions for the Stokes sublayer 3, nearly 
uniform stream 1 and most of the boundary layer 2, respectively. Besides, the latter 
solutions contribute to matching conditions to be posed for all three decks within the 
region where viscous/inviscid interaction takes place. 

In $2 the external potential field is expressed in scaled variables using the small 
parameter t: to ensure the triple-deck formalism which will later on be applicable to 
nonlinear calculations of the boundary-layer receptivity. The flow pattern in most of 
the boundary layer over a flat plate analysed in $ 3  exhibits some specific features due 
to vortex motion at the velocity of a fluid particle, as a consequence singularity enters 
asymptotic expansions when approaching the upper reaches of this region. As shown 
in $4 in accord with what has been said, the viscous wall sublayer behaves in a manner 
typical of a passive Stokes layer, no erupting spikes develop here since the vortex 
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strength is weak. This brings an end to developing solutions under the action of the 
known pressure gradient induced by the convected potential vortex. Sections 5-7 
describe the interaction stage in the vicinity of a small hump or dent located on the 
plate, a boundary-value problem for the viscous wall sublayer involves time- 
dependent terms arising from the vortex-induced pressure and velocities. The 
boundary-value problem is reformulated in canonical variables in $8 to reduce the 
number of similarity parameters to four provided that the shape of the roughness is 
fixed. The parallels between the process at hand and sound scattering from a boundary 
layer with a local surface imperfection at the bottom are indicated in $9. Results of 
computations are presented in 9 10, they point to wave-packet generation when the 
vortex passes over an obstacle, the oscillation amplitude (of order 1 in scaled variables) 
being determined by the obstacle sizes. The receptivity mechanism is essentially the 
same as in the linear problem in spite of it being governed by the full system of Prandtl 
equations with the self-induced pressure gradient coming from interaction. The wave 
packets nonlinearly emitted evolve explosively in all calculations, revealing in the wall- 
shear-stress distributions very short wavelets which distort the positive phases of each 
oscillation cycle. The negative phases turn out to be narrower and more intensive, they 
are not susceptible to large distortions on the short lengthscale. In order to explain 
vigorous development of the wave packets their Fourier decompositions are plotted as 
functions of the wavenumber. Overlapping of the peak wings and formation of an 
almost continuous spectrum for these modulated signals are apparently responsible for 
their blow-up. Similar results derive from sound-scattering computations briefly 
presented in $ 1 1. Concluding remarks in 9 12 are primarily aimed at the application of 
the theory developed for elucidating the bypass mode of transition in gas-turbine- 
engine flows. 

2. A vortex in a uniform incompressible stream 
Let us consider a vortex that is carried along by a uniform incompressible stream of 

velocity U z  past a flat plate with a small imperfection in its shape. More precisely, we 
assume that a local roughness in the form of a hump or dent is located on the solid 
surface and submerged into the boundary layer (see figure 1). The problem is to study 
the vortex passage over the obstacle and the interaction process with inhomogeneities 
in the pressure and velocity fields provoked by this obstacle. Our main concern will be 
with a wave packet generated in the boundary layer. Results based on a linear analysis 
point to the excitation of unstable modulated oscillations in a thin near-wall region of 
the flow (Ryzhov 1989; Koslov & Ryzhov 1990). On the other hand, Chuang & 
Conlisk (1989) have not revealed in their nonlinear calculations any wave packet to 
arise from interaction. 

A starting point of what follows is the potential function 

x* - L* 
q5* = U z  L*A t a n - l ~  

y*-l* 

of a rectilinear vortex filament in incompressible fluid which occupies an unbounded 
space and is at rest at infinity. Here x*, y* are Cartesian coordinates; two constants I* 
and L* fix the location of the vortex with respect to the solid surface; A introduces a 
normalization multiplier. 

Two points need to be taken into account. First, the effect of a flat plate results in 
a solution for the potential flow region in the form of a pair of counter-rotating vortices 
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that are symmetric about the solid surface at  every instant. This superposition holds 
provided that the separation 21* between the vortices is much less than the distance L* 
from the leading edge of the plate to a straight line connecting both vortices. As is well 
known (Milne-Thompson 1962), the vortex pair does not remain at  rest in a quiescent 
fluid, on the contrary it moves along the symmetry line y* = 0 with velocity 
c,* = UzL*A/(21*) .  Secondly, it is necessary to bear in mind that the flat plate is 
submerged into a uniform stream whose velocity is U: in the absence of vortices. From 
this it follows that the velocity c* of the vortex-pair motion in the laboratory frame of 
reference is c* = U z  [I + L*A/(21*)]. The same model was originally proposed by 
Walker (1978) and Doligalski & Walker (1984) in calculations of the boundary layer 
induced on a flat plate by a two-dimensional vortex, the final stage of the strong 
erupting process terminating in the focusing of the boundary layer into a very narrow 
bands was described in Peridier et al. (1991 a, 6). 

Unlike the papers cited, the further analysis of fluid oscillations occurring in the 
viscous flow region is performed here within the framework of the asymptotic triple- 
deck theory due to Stewartson (1969), Neiland (1969), Stewartson & Williams (1969), 
and Messiter (1970) as applied to an interacting boundary layer with the self-induced 
pressure gradient. The theory starts from introducing a small parameter E = R;li8 with 
the Reynolds number R, being assumed to tend to infinity. In accordance with basic 
concepts adopted in the triple deck we suppose the non-dimensional time to be of order 
2. Insofar as x* - L* = O( U z  t*) where t* is the time measured in initial dimensional 
units, the non-dimensional local distance along the x*-axis is also estimated by 2. In 
the potential velocity field labelled 1 in figure 1 both directions are to be treated 
equally, therefore the non-dimensional distance along the y*-axis is likewise of order 
c2. Thus, we may put 

L* 
t* = E2-t’, X* = L*(l +E’x’), y* = e2L*y;, I* = 2L*bo. (2.2~-d) u: 

An expression for the potential function ensues from (2.1) with allowance made for 
the above remarks, it should be written in scaled variables as well. The proper choice 
of A turns out to be non-trivial to some extent because a relation between the pressure 
and velocity field induced by a vortex is nonlinear. In order to deal with disturbances 
of order E in the near-wall Stokes sublayer (see 94), that provide a match with the 
viscous/inviscid interaction region centred around an obstacle downstream, we need 
to put A = O(e5I2). With the final scaling A = e5/’SO, So = O(1) of the normalization 
multiplier we get 

$* = u: [x* + €5/’L* qqt’, x’, Y;N, ( 2 . 3 ~ )  

x’ - ct‘ 
+tan-’ I 

Y1 +bo 
(2.3 b) 

where c = c*/ U; = 1 + c, and c, = c,*/ U z  = e’i2S0/(2b0) defines the intrinsic velocity 
of vortices. Velocity components corresponding to (2.3 a, b) are 

(2.4~1, b) u* = u: [ 1 + P u ; ( t ’ ,  x’, y;)] ,  v* = €112 u: v’l(t’, x’, y;),  

1 Y;+bo + Y ;  - bo 
(x’ - ct’)2 + ( j ~ ;  - b,)2 (x’ - ct’)2 + ( JJ; + b,J2 ’ 

1 v’ = So [ ( X ~ - c t ~ ) ~ + ( y ; - b o ) ~ - ( ~ ~ - c l ~ ) ’ + ( y ; + b o ) ~  ’ 
x‘ - Ct’ x’ - ct‘ 

( 2 . 4 ~ )  

(2.4d) 
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whence it follows that 

u; = so 260 
(x' - ct')Z + b; ' 

at the symmetry axis y ;  = 0. All that remains to be done is to evaluate the difference 
between the local pressure p* and its unperturbed value p z  in an oncoming stream. For 
a fluid of density p*, substituting ( 2 . 4 ~ ) ~  (2.5) into the Lagrange-Cauchy integral yields 

p* -p: = €p*U;2p;(t', x', y i ) ,  ( 2 . 6 ~ )  

(2.6b) 

It is worthy of notice that variations of the non-dimensional velocities and pressure are 
of a different order in magnitude, for they are connected through a nonlinear 
dependence, as mentioned above. 

A similar problem on the vortex/boundary-layer interaction has been considered by 
Doligalski & Walker (1984) for different values of the fractional convection rate 

Although the mathematical formulation of the problem in their work was different 
from what follows, it is instructive to point out a conclusion of basic importance to be 
drawn from calculated results. If a < 0.75, a rapid lift-up of the boundary-layer 
streamlines accompanied by strong boundary-layer growth occurs in the region behind 
the vortex. In the final stage the process terminates in a separation phenomenon in the 
form of the secondary eddy and its spike-like bursting. As a increases, the relative 
width of the boundary-layer eddy diminishes and the region of strong boundary-layer 
growth narrows. On the other hand, if a > 0.75 the flow evolution within the boundary 
layer is more gradual, the integrations could be carried out to larger times without 
revealing separation with the secondary eddy. The existence of the threshold value 
a = 0.75 is easily derivable from the properties of the velocity field (2.4~-d) induced 
by the original potential vortex. For a < 0.75, the effects of the vortex are strong 
enough to create a region with recirculating fluid bounded by two stagnation points 
located on the wall below the vortex. In the limit case a = 0.75, the two stagnation 
points merge directly beneath the moving vortex and no flow reversal occurs here. For 
a > 0.75, the flow near the solid surface is retarded under the vortex but is always in 
the direction of the oncoming stream. Hence it follows that weak vortices convected 
close to the wall as a + 1 call, in view of e +  0 in (2.7), for a special treatment because 
viscous instabilities may manifest themselves in full measure prior to the developing of 
separation bursting which is delayed to a later stage. However, in view of (2.4a, b) 
characteristic values of both induced velocity components are proportional to 
as for the gradients of these components and pressure, they are as large as O(R;'l6) and 
O(R:!*), respectively. So, in practical terms the vortex intensity is not very weak. 

3. Boundary layer 
Let us turn to most of the boundary layer over a smooth part of a plate upstream 

of a local roughness. Here the transverse coordinate is y* = e4L*y,. Confining 
ourselves to a region of fairly small extent in the longitudinal direction the length of 
which is estimated for instance through x* = L*(l +ex;), we may suppose the fluid 
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velocity in the initial unperturbed motion to be dependent on y2 only. Then the first 
terms of asymptotic sequences for desired functions are written down as 

u* = u z u ;  = u: [u,o(Yz)+41(x;,Y2) U ( X ) +  .* . I ,  

P* = P~+P*U:2,2€~;1(X;,Y2)P(X)+ ... I, 

(3.1 a)  

(3.1 c) 

v* = u* 0; = U: [e3~i l (xL~2> V ( X >  + . . -1, (3.1 b) 

with an obvious definition X = x’ - ct’ of the short-scaled variable that is inherent in 
the inner structure of the potential vortex convected above the flat plate. As for the 
function uz0, it gives the velocity profile in the region of the Blasius boundary layer 
under examination. 

Substituting (3.1 a-c) into the original Navier-Stokes equations yields 

(3.2a, b) 
dU 

P = U ,  v=- 
dX’ 

and in addition 

u‘ +- a 4 1  - - 0, u;J,(u,, - c) + V i I  ~ du20 = -p21, ! ~ aP;l - - 0. (3.3 a-c) 
aY2 dY2 aY2 

2 1  

From (3.3 c) we conclude that pil = p’,,(x;). A solution to (3.3a, b), satisfying the slip 
condition oh1 = 0 at y2 = 0, reads 

(3.44 

(3.4b) 

Since du,,/dy, decays exponentially fast at the outer reaches of the boundary layer, the 
asymptotic behaviour of the velocity field, as y2 + co, is to leading order fixed by 

-1 -1 

24’ 21 +.“$;‘(&) > 0’ 21  + - “-l12p;l (&) y,. 

The estimates obtained conform with the velocity components’ scaling, adopted in 
(2.4a, b) for the potential flow region to within an order of the same power of e but 
differ in functional dependence on t’, x’ and xi. Hence it follows that both relations 
(3.44 b) are not uniformly valid in most of the boundary layer. Strictly speaking, the 
region where Ju2,( y,) - 11 = O(e1I2) must be considered as an additional sublayer to be 
analysed separately. The direct matching of the potential velocity field (2.4a, d )  with 
expansions (3.1 a,  b) for the boundary layer is impossible withoct special analysis. 

In order to get around the difficulty, we take advantage of the fact that the pressure 
does not vary along the transverse coordinate. Insofar as the expression for the 
pressure remains regular when approaching the outer edge of the boundary layer, in 
spite of singularities entering the velocity field, the functions on the right-hand side of 
(3.1 c) are pil = 1, P = p;(t’, x’, 0), the latter being given by (2.6b). Let us go over now 
into a moving frame of reference that is stuck with the potential vortex above the flat 
plate; the velocity components here are designated by means of u,*, v,*. In the 
approximation under discussion, u,, is assumed to be a function of yz only, 
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consequently the flow within the boundary layer proves to be steady and obeys obvious 
conditions 

(3.5a, b) 

at infinity. A relationship between the non-dimensional velocities uL2, vg2 and the 
pressure p i  = P ( X )  = p;(t’ ,  x’, 0) along every streamline $2 = constant, is fixed by the 
Bernoulli integral 

(3.6) 

To arrive at a final form of h, we need to express the transverse coordinate y 2  in terms 
of $z making use of the relation 

u,* = u: M i 2  = u: [u2,(y2)-c], v,* = u: V i 2  = 0, 

:(u;: + u::) + CP; = h($J = +[uz0( y2)  - c]’. 

ensuing from (3.5 a, b). It follows herefrom that $2 + -y2 as y 2  --f 0, whereas 
$2 + $20 - c, y z  with a constant 

if y2 + 00. For yz0 tends to 1 exponentially fast as y2 + co, converges of an improper 
integral on the right-hand side of (3.7) is assured. 

Let us show that the longitudinal velocity u12 evaluated from the Bernoulli integral 
meets a condition that provides matching with the external potential flow. As 
$ 2  --f ~ , , + ~ ~ - c , y ~ , y ~  + co, the asymptotics of (3.6) reads 

1 +---). 2b 
2b, X2+b: 

On the other hand, an obvious expression 

u; + 1 + u;(t’, x’, 0) as y 2  + 0 

may be written relying on (2.4a). Taking into account a relation u,* = u* - (U;  +c,*) 
between longitudinal velocity components in the laboratory and moving frames of 
reference we come to recognize that the latter expression does coincide with (3.8) on 
the strength of (2.5) for u;(t’, x’, 0). 

Besides, a limit value of ui2 as +2 + -y2,y2 + 0 is to be indicated. In this case the 
Bernoulli integral yields 

An analogous limit for the longitudinal velocity in the frame of reference at rest can 
be determined on the basis of (3.1 a). As (3.4a) suggests, ui l+ 1 as y2+0 if the 
correction term c, = ~‘/~6~/(2b,)  in the fractional convection rate a = c = 1 + lc, is 
disregarded as compared to 1. Hence, we have the desired limit in the form 

(3.10) 

which easily reduces to (3.9) by means of (3.2a). Thus, the solution (3.4a, b) in question 
is applicable for describing most of the boundary layer except for a region with 
luz0( y2) - 11 = O ( C ~ / ~ )  located towards its upper edge. 
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4. Stokes layer 

asymptotic sequences 
In the viscous near-wall sublayer 3 of figure 1, the desired functions are expanded in 

(4.1 a) 

(4.1 b) 

(4.1 c) 

where the transverse coordinate is scaled through y* = e5L*y, in accordance with the 
triple-deck theory by Stewartson (1969), Neiland (1969), Stewartson & Williams (1969) 
and Messiter (1970). The system of governing equations is written down as 

u* = u: [FUj,(t’, x’, y,) + . . .], 
v* = u: [€4v;,(t’, x’, y3)  + . ..I, 

p* = p:  +p* u z  [&(t’, x’, y,) + ...I, 

(4.2 a-C) 

The function pj, = P ( X )  = p;(t’ ,  x’, 0) is an evident solution to (4.2~).  As a result, 
(4.2b) separates from other equations to give 

The transverse velocity component uko is evaluated from (4.2a) upon computing the 
longitudinal velocity u;, from (4.3). The boundary condition for ujo at the upper 
reaches of the Stokes layer is obtainable from the matching of (4.1 a) with (3.1 a)  and 
(3.10), namely 

At the flat plate y ,  = 0 we have to meet the no-slip condition u;, = 0. A comment 
concerning the short-scaled variable X = x’ - ct‘ is pertinent at this point. Taking into 
account the correction term c, = P6,/(2bO) plays an essential part only when 
approaching the upper edge of the boundary layer. As for the viscous near-wall 
sublayer, this term should be omitted, just as it has been disregarded in deriving the 
limit (3.10). Therefore we may put 

x = x’- t’, (4.5) 

in analysis of both the Stokes layer and near-wall sublayer in a region of strong 
viscous/inviscid interaction which extends farther downstream. 

With allowance made for (4.5), a particular solution of the non-homogeneous 
equation (4.3) is ui0 = P(X) .  Representing the desired solution in the form 

u,, ’ = ~ du20(o) y ,  + P ( X )  + u;,(t’, x’, y,), 
dY2 

we arrive at the conclusion that the function U;,  satisfies the homogeneous heat- 
conduction equation in t’ and y,. As y3 + 00, a homogeneous limit condition U;, + 0 
ensues from (4.4), whereas a non-homogeneous boundary condition U;, = - P ( X )  
holds at the plate y ,  = 0. A feature peculiar to the boundary-value problem posed lies 
in absence of initial data. Its solution, 

u;, = -- (4.7) 
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completes the analysis of disturbances developing in the boundary layer under the 
action of a given pressure gradient induced by a potential vortex in motion. 

So, the Stokes sublayer responds to the motion of a potential vortex in a passive 
manner if its strength becomes small enough. The Reynolds number R, introduced in 
Doligalski & Walker (1984) is based on the distance I* separating the vortex from the 
wall, hence R, = e2R,. The vortex-induced velocities on the right-hand side of ( 2 . 4 ~ ~  b )  
may be thought of as being expressed in terms of e = RL116 rather than e = RL118. 
Both scaled components u’ and v’ given by ( 2 . 4 ~ )  and (2 .4d) ,  respectively, remain the 
same when the definition of e changes. Generation of growing disturbances by the weak 
potential vortex can occur in the process of its interaction with a small roughness 
located at the bottom of a boundary layer. However, Tollmien-Schlichting waves have 
not been seen in calculations by Chuang & Conlisk (1989) of the vortex in motion over 
a hump. A plausible explanation for their results lies in conditions which were chosen 
to be similar to those in Doligalski & Walker (1984), and is twofold. First, the length 
of the obstacle was of order I* and therefore too large for Tollmien-Schlichting 
eigenmodes of sufficient amplitude to be excited and become really operative on their 
intrinsic timescale. Secondly, the vortex intensity was fairly strong for a small tertiary 
eddy to arise and then terminate in the singular focusing during the interactive phase. 
In order to reveal the wave-packet emission in the process of viscous/inviscid 
interaction, we need to consider humps or dents on an otherwise flat plate which are 
shorter by an order of magnitude, that is to say, their length must be O(el*). This 
assumption is at the heart of the following analysis. 

5. Potential region in the vortex/roughness interaction 

figure 1 are to be scaled through 
According to the aforementioned statement, the sizes of this region labelled I in 

(5 .1  a, b )  

whereas the non-dimensional time is defined by ( 2 . 2 ~ ) .  It follows that conditions for 
desired fluid parameters to be matched to analogous parameters of the potential vortex 
over a smooth part of a plate must be imposed as x’ + 0, xi + - 00 and y i  + 0, y l i  + 00. 

A limit expression ensuing from ( 2 . 6 ~ )  shows that the excess pressure is expanded in 
an asymptotic sequence of the form 

* - *u*z 

x* = L*(l + € 3 X i ) ,  y* = €3L*Yli, 

(5.2) P*-Poo - P 00 [eP11(t’)+e2P12(t’7Xi,~li)+ *”I’  
Here the leading term pI1 = p;(t’, 0,O) to be obtained with the help of (2 .6b)  reads 

p l l  = -:$[( --+ 1 2bo ) z ] - ( & ) 2 .  2b0 (ct’)Z + b; ( 5 . 3 )  

As for the correction term p12,  the flow pattern in the two lower decks depends only 
on its limit value 

We may also write down the corresponding asymptotic representation of the velocity 
field and inquire into its properties in the limit as xi + - co, yli  + co that is of primary 
concern for matching. The leading term of order in the expression for the perturbed 
longitudinal component is, in view of (2.4a, c),  a function oft’. The next term of order 
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e3l2 features linear behaviour both in xi and yli when approaching the limit in question. 
An expansion for the transverse velocity component begins with a term of order e3l2 

which is proportional to yli at infinity. As can be seen from (2.4b, d), a term of order 
2 makes no contribution to be quadratic in xi and yl i  in the limit as xi + - 00, yli  + co. 
The quadratic form in xi and yli  first arises in this limit owing to the contribution from 
a term of order e5I2. We may conclude that the problem on a function plz entering the 
right-hand side of (5.2) is reducible to the Laplace equation in xi and yli. The latter is 
characteristic of the free interaction theory developed in Stewartson (1 969), Neiland 
(1969), Stewartson & Williams (1969), and Messiter (1970). As a first step, the linear 
asymptotics should be subtracted fromp,, in order to provide a solution to be bounded 
at infinity. This asymptotic identically satisfies the Laplace equation and is prescribed 
by (5.4) along the xi-axis. Then, the part of the pressure under examination is induced 
by variations of the displacement thickness which is an unknown quantity to be 
evaluated simultaneously with the velocity field. All other details of analysis of the 
potential region are omitted for brevity. 

6. Locally inviscid region of the boundary layer 
Let us consider most of the boundary layer extending downstream of a similar region 

over the smooth portion of the plate where the flow pattern is fixed by the results 
exposed above. Clearly, this raises the question as to what extent the velocity field 
changes under the effect of a surface imperfection. Advantage of (5.1 a) is taken to scale 
the longitudinal coordinate, whereas the scaling y* = e4L*y2 of the transverse 
coordinate is evident. Desired functions are presented through 

u* = u: Eu,o(vz) + eUZl(f’, X i , Y Z )  + . ..I, (6.1 a) 

U* = u: [ “ U Z 1 ( t ’ ,  xi,y2) + ...I, (6.1 b) 
P* = Pz +P* u y  [epzi(t’) + e2P22(t’, xi, yz> + . ..I, (6.1 c) 

pzl = pll(t’) being known by virtue of (5.3). 
As usual, a system of governing equations is cast in the form 

however, we need to deal with the solution 

(6.2a7 b) 

involving an additional function Bi that is zero in most cases studied so far. This 
function comes from matching (6.1 a-c) as xi + - co to (3.1 a-c) where both variables 
x’, xi + 0 - . As a result we get 

(6.3) 

As for the instantaneous displacement -Ai(t’ ,  xi) of streamlines, it should meet the 
requirement Ai + 0 as xi --f - 00. Since uil is in point of fact independent of xi on the 
strength of (3.4a) with pi, = 1, the limit value u~,(O,y,) on the right-hand side of (6.3) 
is merely u ~ , ( y z ) .  

When approaching the upper edge yz+ 00 of the boundary layer, uil experiences a 
singularity of order e-l12 whose nature was clarified in 53. The same singularity is 

Bi = ui,(O, Y J  ~ll(t’). 
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involved in Bi(t’ ,y2).  Hence it follows that the limit of the longitudinal velocity cannot 
be set by ( 6 . 2 ~ )  in the region where Iuzo(y2)- 1) = O(e1’2). On the contrary, the 
transverse velocity obeys (6.2 b) everywhere within the locally inviscid deck of the 
boundary layer for the singularity is missing from the expression just mentioned. 
Matching (6.2b) to the relation defining the transverse velocity in the upper deck with 
potential flow yields 

ds. (6.4) 

The first term on the right-hand side of (6.4) derives from the motion of the original 
parent vortex, the second term is typical of asymptotic problems on viscous/inviscid 
interaction. 

7. Viscous near-wall sublayer in the vortex/roughness-interaction region 
The sublayer 111 of figure 1, to be discussed later, is a downstream extension of the 

Stokes layer, the independent variables here are t’, xi ,  y3. Asymptotic expansions for the 
desired functions read 

U* = U : [ e ~ 3 0 ( t ’ , x i , ~ ~ 3 ) +  ...I, (7.1 a)  

u* = u: [€3v30(t’, x i ,  y,) + . . .], (7.1 b) 

p* =P~+~*U~2[~p31(t’)+~2P32(t’,Xi,Y3+’..1, (7.1 c)  

withp,, = p z l  = pll ( t ’ )  being given by (5.3). Substituting (7.1 a-c) into the initial system 
of Navier-Stokes equations yields 

(7.2~7, b) 

(7 .2~)  

These are the Prandtl equations where the excess pressure p32 is not prescribed in 
advance and should be determined simultaneously with the velocity field (Stewartson 
1969; Neiland 1969; Stewartson & Williams 1969; Messiter 1970). 

Let us discuss the boundary conditions for the Prandtl equations. Matching (7.1 a-c) 
to (4.1 a-c) with allowance made for (4.6) leads to 

In keeping with remarks advanced in $4, we need to put c = 1 in the definition (5.3) of 
p I 1 .  As for UL0, this function is fixed by (4.7). On the other hand, matching (7.1~-c) 
to (6.1 a-c) results in the limit condition at the outer edge of the viscous near-wall 
sublayer. With (6.2a, b) and (6.3) taken into consideration, the limit condition becomes 

Besides, the relations p32 = p Z 2  = p12(t’, x i )  arise from the matching of pressures 
operating across three different layers located within the viscous/inviscid interaction 
region at hand. These pressures involve a term with the unknown displacement 
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thickness, -A,(t',  x), which lies at the heart of the free interaction process. The no-slip 
conditions 

make the boundary-value problem for a plate with a local hump or dent complete. The 
shape of the latter is given by g,(x,), that is non-vanishing only on some interval 
0 < x i  < xio, whereas exterior to this interval g ,  = 0. On the assumption that 
max(g,(x,)( = 1 ,  a new constant a, serves for gauging the height or depth of the 
roughness. 

Another approach to analysis of the free-stream vorticity propagation leading to the 
interaction with a boundary layer in the vicinity of a local imperfection of a flat plate 
has been developed by Kerschen (1989). He considered a convected gust assuming that 
there were no pressure fluctuations in the external velocity field. This specific vortical 
flow can penetrate the boundary layer on a flat plate only by viscous diffusion. The 
process is extremely weak at high Reynolds numbers, with the amplitude of unsteady 
disturbances in the near-wall sublayer being exponentially small. Here the receptivity 
mechanism arises solely from the distortion of the gust by an obstacle that results in 
the required short-scaled pressure gradients. A study by Goldstein, Leib & Cowley 
(1992) on a flat-plate boundary layer exposed to free-stream vorticity should be 
mentioned also. Their (three-dimensional) analysis shows how a small streamwise 
disturbance in the otherwise uniform stream ahead of a flat plate is amplified by 
leading-edge bluntness affects and eventually leads to a weak but nonlinear spanwise 
motion far downstream from the leading edge. Evidently, the aim of both works is 
distinct from that pursued here. 

u30 = v30 = 0 at y 3  = a,g,(x,), (7.5) 

8. Boundary-value problem in canonical variables 
We denote h = du,,(O)/dy, and introduce new independent variables 

t' = hP3/'t, xi = h-5 /4~ ,  y 3  = h-3/4 [y+ag(x)], (8.1 a-c) 

with a, = X3l4a  and g, =g(x) that is non-vanishing only over the segment 
0 < x < xo, xio = h-5/4~0. As for the desired functions, they are defined by means of 

pv = pv(t) = -is2 

The constants b and S entering the right-hand side of (8 .2d)  for 
pressure p, are given by 

b - A-3/4b7 0 -  So = h-11188. 

Substituting (8.1 a-c) and (8.2a-d) into (7 .2~-c )  yields 

-+-=o, au av 2 = 0 ,  aP. 
ax ay aY 

au au au dp ap. a2u 

at  ax ay d t  ax a y  -+u-+v- = 2-2 +-. 

J 

( 8 . 2 ~ )  

( 8 . 2 4  

the vortex-induced 

(8.3a, b) 

(8.4~2, b) 

( 8 . 4 ~ )  
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Here the pressure gradient consists of two terms. The first one, dp,/dt, depending on 
time only derives from the motion of the original parent vortex, the second term, 
api/c?x, is the contribution to the pressure gradient from the vortex/roughness 
interaction resulting in sharp variations of the instantaneous displacement thickness, 
-A(t,x). In accordance with (6.4) and (8.2~)  the self-induced pressure takes on the 
form 

Now we turn to the boundary conditions which also involve the displacement 
thickness sought for. The asymptotic behaviour of the near-wall sublayer in the limit 
as xi+- 00 essentially depends on U;,(t',O,y,) in view of (7.3). This function is a 
solution to the classical heat-conduction equation. The latter remains invariant under 
the affine transformation (8.1 a, c) of t',y3 hence (7.3) reduces to 

~+~+p,( t )+U,, ( t ,y)  as x+-00. (8.6) 

The form of U,, on the right-hand side of (8.6) is obtainable from (4.7) as 

with allowance made for the fact that g(- 00) = 0. In canonical variables the limit 
condition (7.4) at the upper reaches of the viscous near-wall sublayer reads 

u-y+p,(t)+A(t,x) as y +  co. (8.8) 

u = v = O  at y = O ,  (8.9) 

Finally, the no-slip conditions (7.5) are written in the standard form 

owing to a shift (8.1 c) in the transverse coordinate. 
Thus, the fluid motion obeys the Prandtl equations (8.4a-c) with the pressure 

gradient consisting of a prescribed quantity dp,/dt and a part apPi/ax sought for. By 
virtue of (8.5), the latter depends, in turn, both on the roughness shape fixed by g(x) 
and the instantaneous displacement thickness, - A(t ,  x). The total number of the 
similarity parameters determining the flow pattern is four. Two of them, the strength 
S of the vortex filament and the distance b separating it from the wall, serve to specify 
p, as a function of time which enters the boundary conditions (8.6) and (8.8) as well. 
Two additional parameters, the height (or depth) a of the obstacle and its length x,, are 
found only in (8 .5) ,  they are missing from the boundary conditions. It is worthy of note 
that V,, evaluated from the velocity field within the Stokes layer depends on the first 
pair of parameters, 6 and b, for the kernel of an integral on the right-hand side of (8.7) 
is expressed through p,. The only similarity parameter appears in a simpler version of 
the problem on the boundary layer induced by a convected vortex over an infinite flat 
plate (Doligalski & Walker 1984). 

9. Analogy with sound scattering 
The interaction of an acoustic wave travelling along a plate with an obstacle placed 

at some station from the leading edge is to a large extent similar to that set forth above. 
Harmonic oscillations have been studied by Ruban (1984), Goldstein (1985), and 
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Goldstein & Hultgren (1987, 1989), however the closest resemblance shows the 
propagation of a sound pulse. Features peculiar to this phenomenon stem from three 
sources. First, a fluid in the potential flow region cannot be considered to be 
incompressible even if velocities are small everywhere. This implies the necessity of 
incorporating the Mach number M ,  into a set of similarity parameters. Secondly, 
unlike a vortex stuck with some particular fluid particle, an acoustic pulse propagates 
relative to the same particles with the speed of sound. Thirdly, it follows that a 
relationship between the excess pressure and particle velocities in an acoustic wave is 
linear (more precisely, this relationship is the same as that inherent in the Riemann 
travelling wave). The latter point is crucial, for it allows us to simplify significantly the 
analysis of the flow in a region upstream of a local roughness. Omitting details let us 
present an extension of results by Ruban (1984), Goldstein (1985), and Goldstein & 
Hultgren (1989) as applied to signals of the pulse mode. 

We begin with a remark that the short-scaled variable is defined as 
X = M ,  x’ - (1 + M,) t’ where the non-dimensional time t’ and longitudinal coordinate 
x’ are introduced by (2.2a,b). Similar to (2.6a), the excess pressure proves to be 
proportional to c, however, p;(t’ ,  x’) is an arbitrary function of X expressed in terms of 
the perturbed velocity simply through p’, = M-,lu;(t’, x’). Then, an expression 
P = P ( X )  = p;(t’, x’) holds true for a function entering the right-hand side of (3.1 c). 
Owing to a linear dependence relating the excess pressure to the perturbed velocity in 
the external region of the fluid motion, a solution to the system of equations for uhl and 

remains regular when approaching the upper reaches of the boundary layer as 
opposed to (3.4a,b) with a singularity becoming operative as yz+  00. As a result, we 
do not need to perform a separate analysis that leans upon going over into a moving 
frame of reference in order to take advantage of the Bernoulli integral. The governing 
equation (4.3) still stands for sound-pulse scattering, a solution sought for takes on the 
form (4.6). This suggests that the last term U;,  there satisfies the classical heat- 
conduction equation in t‘ and y ,  and is obtainable from (4.7) within an accuracy of 
some constant multipliers. Thus, the structure of a region upstream of the surface 
imperfection is worked out. 

Let us set about posing a boundary-value problem for the viscous near-wall sublayer 
interacting with an acoustic pulse in the region where a local roughness springs up. 
When the independent variables and desired functions are affine transformed in a 
manner analogous to (8.1 a-c), (8.2a-d), the system of governing equations becomes 
(8.4~-c) with p ,  = P(-wt).  As before, this part of the excess pressure involves two 
similarity parameters, 6 and w .  Noteworthy is, however, the fact that the reduced 
amplitude of incident sound disturbances is proportional to 6 rather than S2, as it was 
the case in the vortex/obstacle interaction process. The frequency parameter w 
essentially depends on M ,  and arises in place of a distance b separating the vortex from 
a plate by (8.3a). As for another part pi of the excess pressure, the previous definition 
(8.5) still stands for it and contains two more similarity parameters, a and xo. 

In conclusion, we discuss briefly boundary conditions. At the entry x --f - 00 into the 
viscous near-wall sublayer, the limit relation (8.6) with a function 

u,, = U30(Wt, w112y) (9.1) 

holds and at the upper reaches of this sublayer, (8.8) may be applied. As an example 
let the pressure in a sound pulse be given by means of the &function, then 
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on the strength of (8.7) and (9.1). So, in the simplest case under consideration, U,, is 
a heat dipole with the moment 

I(t> = J k d t 7 Y ) d Y 7  

preserved constant in time. The no-slip conditions on the plate with a bump or dent are 
fixed by (8.9). 

Scattering of harmonic acoustic waves impinging at an angle on the boundary layer 
over a plate has been studied by Kerschen (1989) and Heinrich & Kerschen (1989). This 
process is more complicated than that examined above since disturbances in the 
vicinity of the leading edge need to be analysed separately. Results related to the latter 
effect are summarized in Goldstein & Hultgren (1989). 

10. Computations of vortex/roughness interaction 
Numerical solutions of the nonlinear boundary-value problem posed in $8 are 

intended to trace the evolution of the disturbance pattern depending on the potential 
vortex intensity. The basis for computed results described below is the pseudospectral 
scheme which was first developed in Burggraf & Duck (1982) and Duck (1987). It was 
employed to evaluate unsteady disturbed flows within the framework of both the triple- 
deck theory (Duck 1985, 1988; Ryzhov & Savenkov 1989, 1991) and interacting 
boundary-layer approach (Chuang & Conlisk 1989). Owing to the FFT algorithm 
incorporated, this technique treats reversed-flow bubbles correctly without the need for 
any kind of approximation or adaptation typical of conventional finite-difference 
schemes. Our experience suggests also that the pseudospectral method is less time- 
consuming, for approximately half the number of grid points are necessary to bring the 
results to within a few per cent of the corresponding values calculated by means of 
finite-difference schemes. Similar conclusions have been drawn by Chuang & Conlisk 
(1989). A comprehensive comparison of the two numerical procedures is available in 
the recent study of Bodonyi et al. (1989). Thus, with spectral computation, tolerable 
accuracy in final prediction can be achieved using moderate machines. Insofar as all the 
details of the numerical method in question are well documented now they will be 
omitted here. However, it is worthy of note that spectral computation provides not 
only physical quantities but their Fourier decompositions in the wavenumber space 
also. As we shall see, this additional information is extremely helpful for understanding 
the essence of the nonlinear process under consideration. 

In line with Burggraf & Duck (1982) and Duck (1985, 1987) the system of Prandtl 
equations is transformed by introducing a shear stress 7 = au/ay as a new desired 
function, the same substitution is applied to recast the boundary conditions. The shear 
stress plays a dominant part in constructing an iteration procedure. Thus, the 
boundary-value problem reduces in point of fact to computing the Fourier spectrum 

and then inverting it to yield a distribution 

(10.1) 

(1 0.2) 
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of the shear stress in the physical space. Our prime interest is in the variation of 
7, = 7( t ,x ,O)  as a function of x with t taking on successively increasing values. 
Mention may be made in this connection that separation of a steady boundary layer 
is fixed by a passage of 7, through zero. 

A code with the FFT algorithm underlying the nonlinear calculations was tested in 
Ryzhov & Savenkov (1989) when analysing the soliton nature inherent in central cycles 
of oscillations in a wave packet entering a large-amplitude stage of evolution. It proved 
to be highly efficient even though the calculations were carried out using moderate 
machines. However, the code was modified in such a way that a tridiagonal matrix 
became characteristic of the iteration process to make the overall numerical technique 
as simple as possible. A transformation (Burggraf & Duck 1982; Duck 1985) 

(10.3) 

of the normal coordinate remains to be mentioned in connection with previous work, 
for the experience available suggests that a compressed/stretched grid in the transverse 
direction may essentially increase accuracy when solving an equation for 7. The sizes 
of the computational domain and steps in space were chosen as follows. For a timestep 
A t  = 0.005, the number Nk of mesh points in the spectral space was Nk = 256 = 2’ to 
meet the constraints of the FFT algorithm. A limitation maxk = 25.6 turned out to be 
not too rigid and resulted in a step Ak = 0.1 in the wavenumber k. On the strength of 
(lO.l), (10.2), we may estimate the length 1, of an interval in the longitudinal coordinate 
as 1, = 62.8 with the corresponding step Ax = 0.1227. The equation for 7 was solved 
over the range 0 < 7 < ym = 0.95, as a consequence an upper bound y ,  = 19 for y 
emerged. A step A7 = 0.04 was fixed by 25 mesh points at each (k ,  t-;At)-station. It 
is worth noting that this choice of the finite-difference scheme parameters fixes lesser 
values of steps in time as well as in physical and spectral spaces than those used in most 
of the computations in the aforementioned papers. Therefore, in all examples 
presented below, only 5-6 iterations were necessary to provide convergence in 
computing nonlinear terms on the right-hand side of the equation for 7. Once 
convergence (defined by the maximum change of in the pressure) was achieved, the 
calculation was carried on to the next timestep. For the purpose of checking the 
accuracy, some other grids were used giving graphically indistinguishable results (not 
presented here). 

In numerical analysis of the convected vortex/boundary-layer interaction a hump of 
the form 

(10.4) 

was assumed to be mounted on an otherwise flat plate, the height of the obstacle being 
a = 1 .  The distribution of the disturbed wall shear stress 7; = 7,- 1 in a steady flow 
set in prior to the vortex motion is plotted in figure 2(a),  whereas its Fourier transform 
I.”,I can be seen in figure 2(b). We emphasize at this point that for better visualization 
of oscillation properties a quantity 7; = 7, - 1 -i3U3,,/i3y is generally meant by 7; in 
what follows. This quantity coincides with 7; = 7,- 1 for the steady flow in the 
absence of the vortex inducing an additional component, U3,,, of velocity. The hump 
under discussion brings about moderate (though finite) variations in the velocity field 
of the oncoming stream that do not provoke separation accompanied by a bubble with 
reversed flow. Supposedly, the resulting boundary-value problem is relevant to gas- 
turbine-engine environment where vortical disturbances interact with small imper- 
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FIGURE 2.  Wall shear stress and its spectrum for the steady flow over a hump whose shape is given 
by (10.4) with a = 1 .  (a) Distribution of 7; = 7,- 1 against x. (b) Absolute value of the Fourier 
transform c versus the wavenumber k.  
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FIGURE 3. Variation of the vortex-induced pressure with time at the central point of the hump; p," 
is the maximum of IpJ, b designates a distance separating the vortex from the plate. 

fections of the turbine-blade surface (see, for example, Mayle 1991). The interaction 
process triggered by a potential vortex travelling over a larger-sized hump with a 
separation region downstream o f  it calls for an additional study and work is in progress 
now. 

For better visualization of how the vortex-induced pressure pv  varies in time, let us 
rewrite (8.2d) as 

The plot ofp,/p," as a function of t / b  is shown in figure 3. I f  the vortex strength is taken 
to be 6 = 0.1, thenp," = 1 for the distance b = 0.1 separating the vortex from the plate. 
With 6 fixed, variations of  the vortex-induced pressure are provoked by the separating 
distance b. Let the convective vortex be elevated at a large height above the wall, 
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resulting in the first limit case b % 1. As we can see from (10.5), the positive wings in 
the induced-pressure distribution are of considerable importance since they interact 
with a roughness on a timescale estimated as t = O(b) 9 1. Although the pressure 
variations in the wings are relatively small, they give rise to disturbances exponentially 
growing with time according to linear stability theory (Ryzhov & Terent'ev 1984; 
Ryzhov 1989; Kozlov & Ryzhov 1990). Therefore, by the instant t = 0 the amplitude 
of these disturbances can exceed the amplitude of pulsations which start to develop 
under the influence of the negative peak in the pressure distribution. By contrast, with 
the vortex travelling at a small height above the wall, we are led to the second limit case 
b 4 1. The role played by the long wings in the pressure distribution is herein decreased 
because the timescale of their interaction with an obstacle falls up to order t = O(b) -4 1 
in magnitude. By the instant t = 0 disturbances generated earlier have not managed to 
evolve to an extent that they may distort the structure of a wave packet triggered by 
the central peak of the pressure. The same conclusions are derivable using a study of 
the vortex-induced velocity fields in Doligalski & Walker (1984). 

Allowance for the mechanism underlying the vortex/roughness interaction was 
included in the numerical algorithm. Time in the iteration process was counted from 
to = -3 .  Special tests confirmed that computed results were not affected by this 
particular choice of the initial instant. What is more, frictional intensities calculated at 
t = - 1 appeared to be practically identical to those prescribed at to = - 3.  The wings 
in the vortex-induced pressure exert some influence on the shape of oscillations, 
emitted in the course of interaction, which is hardly accounted for. In order to 
eliminate this influence from the following analysis of disturbance propagation or 
reduce it to a minimum, the distance separating the vortex from the plate was taken 
fairly small (as mentioned above, b = 0.1). 

First of all, it is advisable to make a comparison between results of linear and 
nonlinear studies of the interaction process under examination. Let us put 
S = (O.l)'iz x lo-', whencep," = 10-l. With this value of the vortex strength, the system 
of equations (8.4~-c) can be linearized around the basic steady flow marked by 
distributions T:, I.",[ in figures 2(a) and 2(b), respectively. The shape of disturbances 
emitted is shown in figure 4(a) for t = 3 whereas figure 4(b) illustrates their spectral 
content; in both cases a solid line relates to the nonlinear solution, a dotted line is 
drawn according to the data from a linear approach. This is a typical wave packet that 
was generated during convected vortex/hump interaction and then broke away from 
the obstacle when moving downstream. An oscillation pattern of this type is in full 
agreement with the general concept of boundary-layer receptivity to disturbances of a 
different physical nature (Goldstein & Hultgren 1989; Kerschen 1989 ; Ryzhov 1989 ; 
Kozlov & Ryzhov 1990). It is worthy of notice that accounting for nonlinear effects at 
an earlier stage under discussion makes the amplitude of several central cycles of 
pulsations grow faster whilst the amplitude of oscillations advanced to form a long 
'wave tongue' of the modulated signal turns out to be practically identical in the 
framework of both linear and nonlinear approaches. The spectrum I.",[ merits notice 
also : the first smoothed-out maximum here is apparently associated with a steady flow 
past the same obstacle (cf. figure 2b), the second forked maximum made up of two 
peaks features the phenomenon at hand in nonlinear formulation. The position of 
these two peaks around the wavenumber k = 2.75 corresponding to the fastest growing 
mode of linear disturbances is typically occupied by another smoothed-out maximum 
which is responsible for amplitude-modulated oscillations within a weak wave packet 
(Ryzhov & Terent'ev 1986; Ryzhov & Savenkov 1989, 1991 ; Kozlov & Ryzhov 1990). 
The splitting of the second maximum and wiggles in the decaying part of arise from 
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FIGURE 4. Wall shear stress and its spectrum for a wave packet generated by a weaker vortex of 
pr = lo-' at t = 3;  ---, linear approach; -, nonlinear calculations., (a) Distribution of 
7; = 7,- 1 -aU,,/ay, where U,, is the vortex-induced velocity defined in (8.7), against x. (b)  Fourier 
transform lcl versus the wavenumber k ;  the first smoothed-out maximum is associated with the 
steady flow, the subsequent maximum near k = 2.75 appearing as fork-shaped in nonlinear 
calculations corresponds to the fastest growing mode of linear disturbances. 

sums and differences of the wavenumbers characteristic of the steady velocity field and 
most unstable Tollmien-Schlichting modes. However, these nonlinear effects do not 
lead to short-scaled distortions in the signal shape. 

Let us enhance the vortex-filament strength choosing S = lo-' with a consequence 
that p," = 1 and an initial value p,( - 3) = - 5.5 x lop4. As seen from figure 5 (a) ,  at the 
time t = 1 the wave packet is of a fairly developed shape but still inextricably entwined 
with steady disturbances of the boundary layer centred around the hump. A plot of the 
spectrum in figure 5 ( b )  corresponds to this stage of disturbance evolution. The two 
maxima following each other exert control over the wall-shear-stress distributions in 
the steady flow and wave packet, respectively. It is obvious that an increase of when 
the wavenumber approaches a value k = 5.5 is brought about by the start of the 
nonlinear process. Owing to nonlinearity, along with vigorously growing modes from 
the vicinity of k = 2.75, modes with the wavenumbers doubled become amplified as 
well. However, the spectrum 1?",1 has two more local maxima over the range 
2.75 < k < 5.5. They arise from a fairly complicated interaction of steady disturbances 
with pulsations induced by the convected vortex. The very generation of both maxima 
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FIGURE 5. Wall shear stress and its spectrum for a wave packet generated by a vortex of the moderate 
strengthp; = 1 at t = 1. (a) Distribution of 7; against x shows a fairly developed oscillation pattern 
to be inextricably entwined with steady disturbances. (b)  Fourier transform I.",I versus the 
wavenumber k with two maxima controlling the disturbed steady flow and the wave-packet emission. 

and small-amplitude wiggles with k > 5.5 can be inferred in the same way as has been 
used in the above discussion of the spectrum in figure 4(b). However, irregularities in 
the spectral space are found to be more flattened now. 

Figures 6(a)  and 6(b) show the same wave packet with p," = 1 and its spectrum at 
t = 3 ,  i.e. at an instant which was chosen above for discussing weaker (nearly linear) 
disturbances illustrated by figures 4(a) and 4(b). A nonlinear character of oscillations 
clearly manifests itself in cycles with the largest amplitude (of order 3). The parts of two 
central cycles with negative wall shear stress are narrower as compared to these parts 
where the frictional intensity is positive. The pulsation swing in the negative phases of 
each cycle is greater than that attained in the positive phases. This is a typical feature 
of the soliton nature of nonlinear disturbances propagating through a boundary layer. 
In connection with the wave-packet structure, soliton properties were first recognized 
by Ryzhov & Savenkov (1989); their importance for explanation of the K-type of 
laminar boundary-layer breakdown was indicated in Ryzhov (1990) and discussed in 
detail by Kachanov, Ryzhov and Smith (1993) using both theoretical concepts (in the 
framework of the Benjamin-Ono equation) and experimental evidence. The 
formation of spikes in regions with positive values of 7, is also intrinsic to the 
phenomenon in question. The emergence of these spikes marks the onset of a 
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FIGURE 6. The same wave packet and its spectral content at a later instant t = 3. (a) Distribution of 
7; against x exhibits spiky oscillations of much larger amplitude as compared with steady 
disturbances. (b) Fourier transform I.",/ versus the wavenumber k contains local maxima derived from 
the modes of multiplicity 2 to 5 of the most amplifying linear wave. 

transitional process terminating in the blow-up of the regular pattern of the wave 
packet. On the other hand, disturbances of the smaller amplitude which are travelling 
at higher speed in front of the wave packet obey the linear laws. Nevertheless, the 
regime as a whole may be regarded as one where the boundary-layer receptivity to an 
external convected vortex is responsible for emission of a moderately nonlinear wave 
packet close to the plate imperfection. 

The following comments are in order with regard to the spectral curve in figure 6(b). 
First, the height of the major maximum around k = 2.75 increased approximately by 
a factor of 10 in the time interval At = 2 under consideration, whilst the distribution 
of l<l in a long-wave (small k)  part of the spectrum did not substantially change. This 
was not surprising because the part of the spectrum mentioned is primarily responsible 
for the steady velocity field close to an obstacle. With the major maximum drastically 
enhanced, wiggles in the spectral intensity proved to be much weaker as compared with 
irregularities featuring the behaviour of I?",/ in figure 4(b) for p," = 10-1 at the same 
instant f = 3. Then, amplification of modes with doubled values of the wavenumbers 
in the vicinity of k = 5.5 became more acutely pronounced, but in addition to them 
modes of higher multiplicity came into operation and began to grow. Clearly 
discernible local maxima in 1;?",1 derive from the modes of multiplicity 3, 4 and 5. The 
new maxima are gently sloping and intervals with I<I = 0 are missing in between, i.e. 
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FIGURE 7. Wall shear stress and its spectrum for a wave packet generated by a stronger vortex of 
p ;  = 3 at t = 2.  (a) Distribution of 7; against x gives a picture of large-sized nonlinear pulsations 
which become fully detached in the close vicinity of the hump. (b) Fourier transform [;?"I versus the 
wavenumber k with several small local maxima in the range 4 < k < 8 ensuing from the complicated 
interaction of the convected vortex with the steady inhomogeneous velocity field. 

the filling of the spectrum takes place in an almost continuous manner. Owing to this 
feature the earlier stage of the wave-packet breakdown quickly terminates in a blow- 
up of the modulated signal. However, mention should be made that subharmonic 
modes of multiplicity $ are not excited in two-dimensional disturbances. The 
subharmonic resonance is apparently intrinsic in three-dimensional oscillations only. 
The first experimental evidence providing strong support for this view was obtained by 
Gaster & Grant (1975). The development of localized disturbances in a boundary layer 
from a small-amplitude wave-packet stage up to the ultimate formation of a turbulent 
spot was traced in low-turbulence wind-tunnel tests by Cohen et al. (1991). 

The explosive character of the modulated signal propagation is further illustrated by 
the computation of a vortex filament of still greater intensity for which purpose we put 
6 = .\/3 x 10-1 and, respectively, p," = 3,  p , ( - 3 )  = - 1.65 x lop3. The wave packet 
shown in figure 7(a) at the time t = 2 bears the same distinctive features as that 
discussed above, but the pulsation swing within its central cycles increases appreciably 
(the maximum amplitude becomes of order 5). The spectral curve in figure 7(b) 
involves an acutely pronounced maximum close to k = 2.75, corresponding to the most 
amplified modes of linear oscillations, and a slightly bifurcated maximum with doubled 
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FIGURE 8. The same wave packet at a later instant t = 2.5 with undistorted soliton-like negative 
phases and sharp spikes accompanied by short-scaled wiggles arising in the positive phases of two 
central cycles. 

values of the wavenumbers in the vicinity of k = 5.5. Yet another maximum is located 
in between, it derives from complicated interaction of the vortex filament with an 
inhomogeneous velocity field around the hump on the flat plate. Thus, the spectral 
curve I.",] in figure 7(b) behaves very much like analogous distributions inherent in the 
linear stage of disturbance evolution (figure 4b) as well as in the onset of the nonlinear 
process (figure 5b). Our concern is, however, with a distant part of the spectrum 
specified by k > 5.5. Though gently sloping and flattened maxima with three-, four-, 
and five-fold values of the wavenumbers are clearly discernible in the general run of the 
curve, these parts of the spectrum merge together leaving no empty intervals with 

= 0. Furthermore, oscillations are excited over the range 15 < k < 25 (actually 
limited by a code in operation). The spectrum becomes truly continuous pointing to the 
fact that the wave packet enters a final stage where its regular pattern breaks down. The 
excitation of distant parts of the spectrum with k % 1 for disturbances of large 
amplitude emitted under different circumstances has been registered also in 
computations by Duck (1987, 1988) and Bodonyi et al. (1989). 

Further computation soon becomes unreliable using parameters of the code 
indicated above. First, a wavenumber range 0 d k d 25 should be extended whereas a 
step-size Ak = 0.1 in the spectral space needs to be made smaller. However, qualitative 
trends to dominate the ensuing evolution of the wave process may well be brought to 
light with finite-difference scheme parameters kept unchanged up to the instant t = 2.5. 
Figure 8 illustrates the overall structure of localized disturbances. Characteristic of the 
terminal stage is an intensive and yet smooth growth of the negative 'soliton' phases 
of two central cycles, in spite of their large (of order 15) amplitude. As for the positive 
phases of the same cycles, they are completely distorted exhibiting extremely sharp 
spikes and wiggles which come about under the influence of a short-wave part of the 
spectrum with 10 < k < 25. One more spike takes shape in the positive phase of 
another cycle moving somewhat faster in front of these two. The tendency toward 
instability of positive phases in the wall-shear-stress distributions vigorously affected 
by spike formation has been revealed by Ryzhov & Savenkov (1989) when processing 
numerical data related to a slightly earlier stage of a wave-packet propagation under 



48 0. S. Ryzhov and S. V. Timofeev 

different circumstances (see also Smith 1991). As we see, the same tendency features the 
process of convected vortex/small roughness interaction. According to Chuang & 
Conlisk (1 989), wiggles appear as well when the vortex strength gets sufficiently high 
to provoke the singular focusing of a tertiary eddy generated in the interacting 
boundary layer. In the present example, the characteristic length peculiar to the 
negative ‘ soliton ’ phases of central cycles remains in effect unchanged with time 
varying through a range 2 < t < 2.5, however, the positive phases are being filled by 
short-scaled large-amplitude pulsations. A possible explanation for this effect is the 
onset of a Rayleigh instability triggered on a streamwise lengthscale much shorter than 
that underlying the triple-deck theory (Smith & Bodonyi 1985), though inviscid 
instabilities may persist within the full triple-deck formulation under discussion here 
(Tutty & Cowley 1986). A careful analysis by Duck (1988) lends credence to the view 
that Rayleigh modes may enter calculations and affect disturbance breakdown. In turn, 
an abrupt decrease in the streamwise lengthscale of oscillations calls for revising key 
assumptions of an asymptotic theory based on the boundary-layer concepts, and 
allowance for the normal pressure gradient should be made first of all (Ryzhov 1993). 

11. Sound scattering computations 
As was mentioned in 99, there is the exact analogy between the convected 

vortex/surface-roughness interaction and sound scattering into Tollmien-Schlichting 
waves by inhomogeneities embedded in a steady velocity field (for a review of the latter 
topic see, for example, Goldstein & Hultgren 1989). What is more, the form 
At) = P( - w t )  of a sound pulse can be chosen in such a way as to render it identical to 
a function pv(t)  defined by (8.2d). This enables the vortex motion and interaction to 
be modelled by means of acoustic generators. The reverse does not hold, however, 
because sound disturbance may be given an arbitrary shape. 

Let us describe in brief computational results on modulated oscillations in the 
boundary layer provided that 

f = 6t exp (- wt) ,  ( t  2 0), (11.1) 

and f = 0 for all t < 0. Here the values of parameters are fixed by 6 = O.le/w and 
w = 5.765, the obstacle being specified through (10.4) and a = 1. As distinct from a 
sharp peak with gently sloping wings on each side of it which are characteristic of the 
pressure distribution in figure 3, a function pv = f i t )  in the case in question is positively 
defined for any t > 0, a plot of this function is presented in figure 9. With the values 
of parameters indicated we get p,” = 0.1. As a result sound scattering gives rise to weak 
vortical disturbances. The wave packet emitted during interaction enters an essentially 
nonlinear stage at approximately t = 5 and figures 10(a) and 10(b) show the 
distributions of TI and IcI, respectively, for this particular instant. In spite of the fact 
that the modulated signal is generated by a pulse with the positive excess pressure, the 
oscillation pattern does not change. In all essential features the wave packet bears a 
close resemblance to those depicted in figures 6(a) and 7(a) .  As for the spectral 
function its main maximum is somewhat shifted from k = 2.75 towards lesser 
values of the wavenumbers, and other local maxima for modes of multiplicity 2 to 6 
stand out clearly. A shift in the position of the main maximum derives from actual 
nonlinearity of the process leading to localized disturbance generation. Though the 
process as a whole depends on the precise form of pv, this dependence, as the 
computation suggests, is weak for the hump (10.4) with a = 1 in the present example. 

The last example relates to the wave-packet emission during sound scattering on a 



Potential vortex and local roughness interaction 49 

1 1 2  t 

FIGURE 9. Variation of the excess pressure with time in an incident positive 
sound pulse fixed by (11.1) with p: = lo-'. 
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FIGURE 10. Wall shear stress and its spectrum for a wave packet generated by the sound pulse (1 1.1) 
when impinging on the hump, given in (10.4) with a = 1, at t = 5. (a) Distribution of 7: against x is 
very similar to that plotted in figure 5(a )  for the convected vortex/hump interaction. (6)  Fourier 
transform I.",[ versus the wavenumber k displays several flattened and gently sloping maxima built up 
by modes which are multiples of the most amplifying linear wave (cf. figure 56).  

surface imperfection given by (10.4) with a = - 1. The form of an acoustic pulse 
remains as in (11.1) where S = O.le/w and w = 5.765. The objective now is to further 
elucidate the truly nonlinear mechanism of boundary-layer receptivity, depending on 
whether a hump or dent of an analogous shape is placed on an otherwise flat plate. For 
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FIGURE 1 1. Wall shear stress and its spectrum for a wave packet generated by the sound pulse (1 1.1) 
when impinging on the dent, given in (10.4) with a = - 1, at r = 5. (a) Distribution of 7; against x 
demonstrates weaker oscillations than those in figure 9(a) provoked by a similar hump. (b)  Fourier 
transform I.",[ versus the wavenumber k points out that higher-order modes just start growing. 

better comparison with the previous case, the wave packet in figure 11 (a) is again 
computed at the time t = 5. It is obvious that a dent whose depth is taken to be equal 
to the height of a similar hump initiates weaker disturbances, though of the same 
general structure. In accord with this observation, the spectrum in figure l l (b)  
contains, along with the main maximum close to k = 2.75, only two other local 
maxima built up by modes of multiplicity 2 and 3 whilst higher-order modes with 
k 2 10 are almost not excited as yet. When advancing farther downstream these 
disturbances grow vigorously and, as figure 12(a) shows, detectable wiggles appear in 
the positive phase of one of the central cycles behind a very sharp peak in T$ at t = 5.5 
(cf. the wave packet in figure 8). In keeping with the oscillation pattern in physical 
space, the filling of the spectrum in figure 12(b) is completed over the entire interval 
0 < k < 25 of the wavenumbers. In addition to the main maximum in the vicinity of 
k = 2.75, the two subsequent maxima close to k = 5.5 and k = 8.25, which have been 
formed earlier at t = 5 (figure 1 1 b), become acutely pronounced, whereas more gently 
sloping and flattened local maxima corresponding to modes of multiplicity 4 to 9 are 
formed at  this later instant. Shortly after t = 5.5 further computations become 
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FIGURE 12. The same wave packet and its spectral content at a later instant t = 5.5. (a) Distribution 
of against x shows soliton-like negative phases within a few central cycles to be perfectly preserved 
whilst sharp large-amplitude spikes and short-scaled wiggles emerge in the positive phase of those 
cycles. (b )  Fourier transform [.",I versus the wavenumber k is of the almost continuous type which 
originates from the merging of local maxima corresponding to modes of multiplicity 2 to 9 of the 
fastest growing linear disturbance. 

unreliable owing to excitation high-amplitude modes in distant parts of the almost 
continuous spectrum with local maxima being merged together. 

12. Concluding remarks 
Results presented above allow us to discriminate between two different regimes 

inherent in the potential vortex/surface-roughness interaction. The first regime may be 
called 'vigorous interaction', it sets in when the vortex intensity is of order 1 .  
Theoretically, the most striking features of this type of interaction have been 
recognized by Walker (1978) and Doligalski & Walker (1984), then studied in Chuang 
& Conlisk (1989), and thoroughly investigated by Peridier et al. (1991a,b) using 
Lagrangian formulation of the problem. According to extensive computations 
performed by the authors cited, the high-intensity vortex filament strongly violates a 
boundary layer provoking a rapid lift-up of streamlines in some narrow region. An 
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important point is that the boundary layer starts to thicken without triggering the 
mechanism of viscous/inviscid interaction. At the final stage the process terminates in 
a separation phenomenon taking on the form of the secondary (or even tertiary) eddy 
and its spike-like bursting. The works by Brotherton-Ratcliffe & Smith (1987) and 
Smith (1988) point to the terminal singularity structure as a generic state that might be 
reached by the two-dimensional boundary layer at finite time even if viscous/inviscid 
interaction comes eventually into operation. On the other hand, when the fractional 
convection rate approaches 1 the boundary-layer growth occurs more gradually and 
integrations are carried out to larger times without revealing separation with the 
secondary eddy. 

This suggests that another regime comes into play which may be referred to as 
' turbulence-productive interaction'. Vortices featuring the second regime are of 
relatively small strength, but they travel not far from the body surface in line with 
(2.2~-d), ( 2 . 3 ~ ~  b) and (2.4a-d). As a result, the vortex-induced pressure exhibits a 
sharp peak (figure 3) that is capable of provoking only the passive response of a Stokes 
sublayer adjacent to a smooth wall. In order to match still large streamwise 
lengthscales of impinging disturbances to much shorter ones inherent in the 
Tollmien-Schlichting unstable eigenmodes, some rough elements should be included in 
the body contour in the shape of local humps or dents for the viscous/inviscid 
interaction process to be initiated. Thus, the mechanism of boundary-layer receptivity 
to vortical disturbances is at the heart of the regime under discussion. 

Usually by receptivity of the boundary layer an essentially linear phenomenon is 
meant which is brought about by weak external disturbing sources. However, in the 
particular flow environment considered here the vortex strength is not necessarily so 
small that a linear approximation to the Prandtl equations might be applied. Instead, 
an exact formulation of the receptivity problem should be used from the very 
beginning, making the Tollmien-Schlichting eigenmode generation change into a 
nonlinear process. In this case the wave packet acquires a fairly developed shape when 
it is still inextricably entwined with steady disturbances of the viscous wall sublayer 
centred around a surface roughness (figure 5a). For this reason, the ensuing evolution 
of the localized disturbances soon terminates in a violent breakdown featured by 
extremely sharp peaks and wiggles in the positive phases of several central cycles 
(figures 8 and 12a). Owing to an almost continuous excitation of distant parts in the 
Fourier decomposition of the modulated signal (figures 6b, 7b, 10b and 12b), this 
points to formation of an incipient turbulent spot in compliance with experimental 
observations by Gaster & Grant (1975), Gaster (1980, 1981), Breuer & Landahl(1990), 
and Cohen et al. (1991). Thus, the terminal stage of the wave-packet development is 
characterized by the progressively increasing filling of the spectrum resulting in a blow- 
up of the well-organized disturbance pattern. On the other hand, closed separation 
bubbles with recirculating fluid which are located, according to computations by 
Ryzhov & Savenkov (1989, 1991) and Smith (1991), within the negative phases of 
central cycles appear to be stable and not amenable to distortion by short-scaled 
oscillations in the streamwise direction. 

Insofar as the wave-packet emission happens in the course of convected 
vortex/surface-roughness interaction and therefore is localized in time and space, there 
are distinct differences between a typical signal of this kind and a harmonic wavetrain 
(we confine our discussion to two-dimensional disturbances only). At the nonlinear 
stage of initially monochromatic oscillations, discrete modes of successively increasing 
multiplicity, in reference to the basic frequency, originate and then start amplifying. 
The distortion of the symmetric shape of each pulsation cycle brings about the 
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formation of the Benjamin-Ono algebraic solitons (Ryzhov 1990), conclusively 
identified in low-turbulence wind-tunnel tests with the so-called K-regime of transition 
by Borodulin & Kachanov (1988). All the pertinent data have been analysed from both 
theoretical and experimental sides in Kachanov et al. (1993). The growth of the wave- 
packet amplitude is accompanied by the occurrence of local maxima rather than 
discrete lines in the wavenumber spectrum, however, these maxima are gently sloping, 
flattened, and their wings overlap and actually merge together owing to disturbance 
modulation even at the earlier linear stage of propagation. Merging of local maxima 
gives rise to a continuous spectrum and explosive breakdown of the wave-packet 
regular structure. Continuous excitation of modes with k % 1 is a mechanism 
underlying the final blow-up that completely destroys the positive phases of central 
cycles while keeping intact their negative phases with closed bubbles of reversed flow. 
So, this mechanism is quite dissimilar to the abrupt focusing of the boundary layer into 
a narrow erupting band at the terminal stage of the separation phenomenon caused by 
a strong convected vortex (Walker 1978; Doligalski & Walker 1984; Chuang & 
Conlisk 1989; Peridier et al. 1991 a, b). 

Repercussions of the remarks set forth above for discriminating between ‘natural’ 
and ‘bypass’ routes to transition are crucial. The matter is that in most experimental 
set-ups different sources are employed to artificially excite harmonic wavetrains for 
measuring characteristics of the Tollmien-Schlichting eigenmodes. Data of wind- 
tunnel tests provide information for predicting the onset of turbulent pulsations in a 
boundary layer on the body surface. This forms the basis for a so-called en-method, 
well-known in practical aerodynamics (see, for example, Reshotko 1976). Predictions in 
the framework of the en-method appear to be broadly reliable as applied to aircraft 
wings and fuselage because nearly periodic oscillations contribute the bulk of 
disturbances in flight. However, if real environmental disturbances consist to a large 
extent of gusts, vortices, turbulent patches, and other short-scaled inhomogeneities the 
resulting Tollmien-Schlichting eigenmodes emerge in the form of wave packets rather 
than wavetrains. As elucidated in the foregoing using computational findings, the 
explosive nature of modulated signals is completely dissimilar to the gradual evolution 
of harmonic oscillations. For this reason, all of the data aimed at predicting the onset 
of transition should be obtained from wind-tunnel tests with wave packets artificially 
introduced into a boundary layer and turned to incipient turbulent spots upon blowing 
up (Gaster & Grant 1975; Gaster 1980, 1981; Breuer & Haritonidis 1990; Breuer & 
Landahl 1990; Cohen et al. 1991). 

In connection with the turbulent spot incipience another role played by solitons 
merits notice. As shown by Zhuk & Ryzhov (1982) and Smith & Burggraf (1985) 
nonlinear travelling waves obey the Benjamin-Ono integro-differential equation 
provided that their amplitude exceeds the limit adopted in the present study following 
the triple-deck description. Just for this reason soliton properties manifest themselves 
within several cycles of a wave packet at the final stage before its regular pattern breaks 
down (figures 6a, 7a, 8, 10a and 12a). To simplify analysis, let us consider a related 
problem on the boundary layer adjacent to a heated plate placed vertically into a 
quiescent fluid in the gravity field; then the Korteweg-de Vries equation of classical 
mathematical physics comes into operation (Smith & Burggraf 1985). With an external 
disturbing agency taken into account, the equation includes a time/coordinate- 
dependent term on the right-hand side. Striking conclusions may be drawn from a 
study of periodic travelling waves where the dynamical systems theory is directly 
applicable (Ryzhov 1991 ; Burov & Ryzhov 1992). The Hamiltonian formulation 
reduces the problem to forced oscillations of a pendulum with quadratic stiffness and 
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no friction. If there is no forcing, phase-plane techniques point to the existence of an 
alpha-shaped separatrix loop enclosing a nested family of periodic orbits. The 
separatrix is an image of the Korteweg-de Vries solitons in the phase space, whereas 
the periodic orbits represent the travelling-wave solutions with various amplitudes. No 
matter how small the strength of the external source is, two (stable and unstable) 
manifolds appear in the phase space with an ensuing homoclinic tangle in the so-called 
PoincarC map in place of the separatrix loop. According to a standard procedure (see 
e.g. Guckenheimer & Holmes 1983), the Melnikov function can be used to give proof 
for trajectories with unpredictable behaviour to arise here. Vanishing of the Melnikov 
function along an unperturbed periodic orbit where the frequency is rationally 
commensurate with the forcing frequency, that is, the subharmonic orbit, reveals a 
subharmonic resonance. In turn, homoclinic tangles close to periodic orbits lead to 
random oscillations within a subharmonic resonance band. Thus, the role played by 
solitons and periodic large-amplitude travelling waves is twofold : they form well- 
organized large structures in a shear flow and, at the same time, provoke chaotic 
pulsations. Both properties of the nonlinear phenomenon are inseparable, implying 
that random oscillations spring up against a background of perfectly ordered signals. 
This is not the onset of real turbulence; however, flow randomization starts at the 
soliton stage which comes very early in the convected vortex/surface-roughness 
interaction process. 

The last comment is due now concerning the relevance which this process may have 
to environments with high levels of external turbulence. Conditions for intensive free- 
stream turbulence to occur are observed in gas turbine engines where vortical endwall 
flows trailing each blade impinge against the downstream row of blades, unlike the 
conditions for aircraft wings and fuselage. Ensemble-averaged measurements in 
compressor and turbine rigs show values for turbulence levels of about 5-10 % except 
for the wakes where values of 15-20% are registered (see, for example, Mayle 1991). 
Therefore, it appears that the onset of transition in gas turbine engines is first of all 
controlled by free-stream turbulence. Under these circumstances, transition in a 
boundary layer on compressor and turbine blades was found to occur in the form of 
a bypass mode rather than by taking the natural route peculiar to mild periodic 
excitation. According to Morkovin (1969), the bypass mode triggered by fairly large 
external disturbances does not involve the Tollmien-Schlichting stage at all. On the 
other hand, Walker & Gostelow (1990) have detected oscillations in the Tollmien- 
Schlichting frequency range travelling in a decelerated flow with a fairly low 
amount of free-stream turbulence. The same effect has been revealed by Kozlov 
(private communication 1990) in experiments with artificially excited Tollmien- 
Schlichting waves that emerged in spaces between turbulence spots in a boundary 
layer on a plate and gave rise to new spots. In keeping with observations mentioned 
the wave-packet spectral decompositions shown in figures 6(b), 7 (b), 10(b) 11 (b) and 
12(b) testify that their major maxima in the wavenumber space are associated with the 
most amplifying Tollmien-Schlichting modes centred around k = 2.75. When 
excitation results in the birth of wave packets instead of a harmonic wavetrain the 
length of transition to turbulence becomes much shorter owing to the explosive nature 
of disturbance development. Indeed, the wave packet in figure 5(a) is closely coupled 
to steady inhomogeneities of the velocity field in the vicinity of the hump and those 
shown in figures 6(a), 7(a), 10(a) and ll(a) moved not far away from disturbing 
obstacles. Even an incipient breakdown in figures 8 and 12(a) also takes place a short 
distance downstream of the hump (this distance is well within two tenths of the 
reference wavelengths). That is why wave packets must be hardly observable in the 
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process of vortex/roughness interaction happening under conventional conditions in 
gas turbine engines. However, we may expect the production rate of turbulence spots 
to be strongly dependent on the presence and sizes of rough elements on a real blade. 
As a matter of fact, the ratio of the spot-production rate on a rough surface to that on 
a smooth surface varies from 10 to 30 for turbulence levels in the range of 1-2.5 YO in 
measurements reported by Mayle (1991). Direct tests on vortex/blade interactions 
have been conducted by Straus & Mayle (1992). In their set-up, the boundary layer at 
0.1 blade cord experienced a slightly favourable pressure gradient and its mean-velocity 
profile was initially laminar. At this particular location, the velocity profiles appeared 
to remain laminar throughout the interaction, nevertheless the passing vortex induced 
a huge change in the turbulent energy at the peak of the interaction process. These data 
might be thought to be indicative of the possible generation of Tollmien-Schlichting 
eigenmodes in the form of modulated wave packets that evolve into turbulent spots 
shortly downstream. Certainly, further experiments are needed to make the latter 
conjecture more definite. 
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